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STRAIN RESPONSE OF SIMPLY SUPPORTED BEAMS TO POINT AND ACOUSTIC LOADING

Tony L. Parrott and Joseph A. Drischler

NASA Langley Research Center

Hampton, Virginia

ABSTRACT

Although dynamic strain response is the basic ingredient in fatigue

life estimation schemes, there is a lack of documented comparisons of

measured and predicted strains for responses of either complex or simple

structures. Many investigators have been concerned with measurements of

strain responses on structural components under operational conditions

for which calculations are impractical to perform. On the other hand,

theoretical investigations have been carried out for relatively simple

structures for which few experimental strain response tests have been

conducted, perhaps primarily because of the difficulty of obtaining a

sufficiently close approximation to a set of classical boundary conditions.

It is the purpose of thi_ paper to present a comparison of measured

and predicted s_rain responses for carefully controlled experiments on

beams whose boundary conditions approximate, to a high degree of accuracy,

those of a simple support. The simply-supported-type boundary condition

was found readily amenable to mathematical analysis and to be characterized

by low damping. Considerable development work was required in perfecting

beam-boundary attachments having satisfactory simple support behavior. The

beams were of cold-rolled steel and were of dimensions (20 in. x 2 in. x

O.1 in.) chosen in such a way that significant vibration amplitudes (in

excess of the beam thickness) could be obtained in the fundamental mode.
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The beam attachments developed consisted of right-angle supports of .00_ in_.

thickness stainless steel shimstock welded to each end of the beam and

clamped in a mounting fixture. The beams were excited by both sinusoidal

and random loadings applied both acoustically (uniformly distributed along

beam) and mechanically (at a point location). In addition to strain

measurements both the total equivalent viscous dmaping and the magnitude

of the exciting force were obtained.

In general, good agreement between measure_ and predicted dynamic

bending strain was obtained; however, for sinusoldal point loading the

theory overpredicted, and for sinusoidal acoustic loading the theory

underpredicted the dynamic strains. For random loading the theory and

experiment were in close agreement. The total equivalent viscous dmmping,

which was measured by means of the log decrement technique, was found to

have amplitude and modal dependence.

INTRODUCTION

It is the objective of present-day strain response prediction schemes

to provide engineering estimates of the strain levels at critical locations

in complex structures loaded by spatially distributed forces characterized

by continuous spectra with or without discrete frequencies superimposed.

The prediction of strain response is useful for the purpose of estimating

fatigue life and for determining noise transmission characteristics. The

dynamic strain response of an aircraft or space vehicle structural component

to various types of complex dynamic loading depends, in addition to the

detailed characteristics of the loading, upon the geometry of the structure,

the distribution of the structural mass and elasticity, the ability of the



structure to dissipate vibrational energy, and the boundary conditions

imposed upon the particular structural component of interest by the

remaining structure.

Many investigators have been concerned with measurements of strain

responses on structural components under operational conditions for which

calculations are impractical to perform. On the other hand, theoretical

investigations have been carried out for relatively simple structures for

which few experimental strain response tests have been conducted, perhaps

primarily because of the difficulty of obtaining a sufficiently close

approximation to a set of classical boundary conditions.

It is the purpose of this paper to present a comparison of measured

and predicted strain responses for carefully controlled experiments on

beams whose boundary conditions approximate those of a simple support. It

was found that the simply-Rupported type boundary condition was readily

amenable to mathematical analysis and to be characterized by low damping.

Considerable develolmaent work was required, however, in perfecting beam

beoundary flexure attachments having satisfactory simple support behavior.

TEST MODEL

Illustrated in figure i are the boundary conditions associated with

the various idealized models used in the classical description of beam

behavior. The free-free beam was eliminated frQm consideration in the

present investigation because of the practical difficulty of supporting it

in such a manner as to permit the excitation of the higher modes as well as

the infrequent encounter with anything approaching this type of support in

existing hardware. The clamped-clamped support was also eliminated fr_n
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consideration because of the unwieldy mathematics needed to describe the

response to random type loading and also because of the inherently high

joint damping. Finally, the simple support (hlnged-hlnged) was chosen

because of the ease wlth which the mathematics could be handled, because

of the low damping that could be achieved and because this type of boundary

condition is not too far removed from some practical situations. The last

entry in the table illustrates an idealized model of the beam boundary

conditions which actually existed. The development work centered around

attempting to make the spring stiffness, which governed the vertical

displacement, very stlff without introducing an appreciable resistive

bending moment (See ref. 1.). This resistive bending moment is represented

by the torsional springs. By using a combination of analytical and empirical

methods, a very close approach to true simple support conditions was achieved.

A schematic diagram of the beam geometry, lncludlng flexure support

details and strain measuring locations are illustrated in figure 2. The

analytical work indicated that the reslstlng bending moment would be

negligible if the beam thickness to flexure thickness ratio were on the

order of 25. The flexures were spot welded to the beam as close as

possible to the right angle bend. Observations indicated that the best

performance could be obtained if the flexures were clamped approximately

•032 in. from the beam. Apparently, this was the clearance that minimized

the torsional spring compliance.

As criteria for evaluating the success to which simply supported

conditions were approached, both natural frequencies and mode shapes were

measured. Figure 3 shows a comparison of the measured and calculated
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frequencies for the first five symmetric modesfor a typical beam installa-

tion. In this plot the ratio of calculated to measured frequencies is

plotted as a function of mode number. It will be seen that the measured

frequencies are within 5 percent of the calculated frequencies for all

measured modes. It will be noted, however, that the agreement is not quite

so good at the higher frequencies. This is probably due to the spring

action of the flexures, which calculation indicates should become pred_ni-

nant at the higher frequencies.

As a further test for the closeness of approach to the simple support

condition, the measured mode shapes for the first three symmetrical modes

are cc_ared to the theoretical mode shapes in figure 4. In these plots

the measured strain at two off-center locations on the beam is ratloed to

the strain measured at the told-span location and plotted as a function of

the beam length. The theoretical mode shape for the simple supported

beam is a slnusoid of the appropriate wave length as shown for the first

three symmetric modes. Note that the measured strain ratios are very close

to their proper relative magnitudes. Thus, it appears that a close

approximation to simple support conditions has been attained based on

measured frequencies and mode shapes.

A ntlnber of beams, constructed to be as nearly identical as possible,

were tested in this experiment for the purpose of evaluating individual

differences of behavior. It was found that insofar as frequencies were

concerned, the deviation from calculations did not exceed i0 percent.

Also, nodal patterns were in excellent agreement with calculations. By far

the greater part of the differences in behavior between beams was in the



dynamic strain response which in turn was due to relatively large differences

in the damping between the beams.

AHALXSIS

The test program and the subsequent data that were acquired were

directed toward the comparison of the measured and the predicted strain

response taking into account the detailed nature of the modal damping and

the driving force. The equation of motion for a beam undergoing a general

time varying distributed loading is given by:

El + p

where

E = Modulus of elasticity, Ibf/in. 2

I = Moment of inertia, in.4

W = Deflection, in.

p = Mass per unit length, ibm/in.

p = Damping coefficient, ibf - sec/in. 2

P(_#)= Load distribution along beam, lbf/tn.

This equation was solved for the four cases corresponding to the type of

driving force used in the tests which were as follows:

i. Sinusoidal point load

2. Random point loa_



3- Sinusoidal acoustic load with normal incidence

4. Random acoustic load with normal incidence

The normal mode technique that was used to solve the above equation of

motion made use of the characteristic functions for a simply supported beam

to express the beam displacement response as a series (See, for example,

ref. 2. ). The strain response was then obtained by taking the second space

derivative of the displacement response. For the point load cases, use was

made of the Dirac Delta function to express the loading as an idealized

point load.

The solutions of equation 1 for the rms strain at the mld-span

location for the above four cases are as follows:

1. Point sinusoidal load

PCf,',)r s ¢2}
8"

5

Random point load

,
Sinusoidal acoustic loading for normal incidence

4. Random acoustic loading for normal incidence

(3)

(5)
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where

_"(_,_,_$""_. = root mean square strain response for pure

mode excitation, / in./in.

L = Length of beam, in.

b - Width of beam, in.

h = Thickness of beam, in.

n = Mode number

= Ratio of damping to critical damping

= Angular frequency, rad./sec

fn = Normal mode frequency

P(fn)rms = Sinusoidal loading at a normal mode

frequency, Ibs.

MEASURED DAMPING

The ability to predict the absolute strain magnitude at a given

location on a beam undergoing dynamic excitation depends in part on an

exact knowledge of the total equivalent viscous damping for each mode of

interest as well as how it changes as a function of the response amplitude.

The damping was measured by means of the free decay technique since this

was believed to be the most expedient technique available. In figure 5, a

sample of the measured damping is shown for the first three symmetric modes

of a beam as a function of the rms value of the driving force. In this

plot the damping is given on the vertical scale in percentage of critical

damping and the driving force is plotted on the abscissa in millipounds of

force. Note that the damping in the first mode is essentially independent

of response amplitude having a value of approximately 0.35 percent. However,



the higher modes are seen to be dependent upon response amplitude, the

second mode damping varying from O.lO percent to about 0.24 percent for the

driving force range applied, and the third mode damping varying from about

0.09 percent to 0.20 percent.

COMPARISONS OF EXP_IMENTAL RESULTS AND THEORY

As indicated previously, a knowledge of the damping and driving force

enables one to predict the strain response at any location on a given

simply-supported beam. Measured strain responses have been obtained at the

mid-spau location of the beam for the four types of dyaamic loadings for

which analytical expressions have been derived. Comparisons of these

measured responses with the analytical estimates are given below.

Sinusoidal Point Loading

In figure 6, the strain response in mlcroinches per inch is plotted

as a function of the driving force in millipoumds. The measured aud

predicted strain by use of equation 2 is shown for the first three sy_,etric

modes at the mid-span of the beam. Predicted strain is shown by the ds_hed

curves and the experimental strain values are indicated by the symbols. The

driving force in this case was sinusoidal point loading with a frequency

corresponding to that of the particular mode of the beam being driven. Note

that the agreement between theory and experiment is quite good.

Random Point Loading

The frequency spectrum of the point loading applied to the beam mid-

span is shown in figure 7. Note that the spectrum is flat from 20 Hz to
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approximately 800 Hz. Strain responses of the beam have been measured for

the first three syunetrical modes to such a spectrum of force for various

levels of force input. These measured strain responses are shown in

figure 8 along with the predicted strain response of equation 3 (modal

theory) as a function of the mode number. Also Include_ for comparison

is the strain predicted for the first mode response by the well-knawn

Miles theory (ref. 3). Note that the Miles theory is overpredicting as

expected, being approximately 25 percent high. The modal theory is also

overpredicting and varies from 7 to 15 percent above the experimentally

observed strain response.

Uniform Sinusoidal Acoustic Loading

In figure 9 is shown the measured strain response and predicted strain

response of equation 4 for acoustic loading of the slnusoidal type where

the acoustic loading is expressed in millipounds of force. The acoustic

loading was measured by means of microphones flush mounted into a surface

in which the beam was also mounted to provide baffling. It is observed

that in the first mode, theory and experiment are again in good agreement

with theory overpredicting. In the two higher modes, however, this trend

is reversed. Here the theory seems to be underpredicting. It will be seen

though, that the general trend of the strain response is still predicted

very well. It is to be expected that greater discrepancies will be

encountered between theory and experiment when acoustic measurements are

involved due to the inherent lack of precision associated with extra-

polating an acoustic pressure measurement from a rigid surface to a

vibrating surface nearby.
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Uniform Rand_ Acoustic Loading

The frequency spectrum of the random acoustic loading is shown in

figure i0. It was not possible to obtain a flat spectrum with the means

available for producing acoustic loading. The beam resonance frequencies

of 20, 200, and 500 Hz are indicated on the plot by the vertical lines.

Note that the beam frequencies are located at points on the spectrum where

there is a local minimum or where the spectrum is changing rapidly. Hence,

it was surmised that this type of spectrum would provide a severe test for

the theory since the assumption was made that the excitation for each

mode consisted of white noise the level of which corresponded to that of the

actual spectrum level at the resonant frequency of the particular mode of

intere st.

The results in figure ii indicate the deviation of experiment from

theory for the input spectrum shown in the previous figure. The data are

plotted as the ratio of calculated to measured strain response as a function

of the mode number. Note that the theory predicts the strain response to

within about 40 percent. The greater deviation of experiment from theory

for the third mode may somehow be related to the fact that the spectrum was

changing rapidly with respect to frequency for this mode; however, for the

most part the discrepancies are believed to be due to experimental error.

These results indicate that the present assumptions and approximations used

in the modal analysis schemes for predicting strain levels are adequate

for strain response estimates for the simple structures used in this

experiment.
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CONCEUDING R_ARKS

A technique has been employed for the design of simple structures to

approximate simply supported boundary conditions characterized by low

damping. The use of this technique on a simple beam has established

confidence An modal analysis methods for providing good engineering

estimates of strain levels for loadlngs ranging in complexity from simple

sinusoidal point loading to that of random acoustic loading.
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